Identification of Intracellular Carbonic Anhydrase in Chiamydomonas reinhardtii which Is Distinct from the Periplasmic Form of the Enzyme 1
نویسندگان
چکیده
A physiologically significant level of intracellular carbonic anhydrase has been idenfified in Chlamydomonas reinhardtii after lysis of the cell wall-less mutant, cw15, and two intracellular polypeptides have been identified which bind to anti-carbonic anhydrase antisera. The susceptibility of the intracellular activity to sulfonamide carbonic anhydrase inhibitors is more than three orders-of-magnitude less than that of the periplasmic enzyme, indicating that the intracellular activity was disfinct from the periplasmic form of the enzyme. When electrophoretically separated cell extracts or chloroplast stromal fractions were probed with either anti-C. reinhardtil periplasmic carbonic anhydrase antiserum or anti-spinach carbonic anhydrase antiserum, immunoreactive polypeptides of 45 kilodaltons and 110 kilodaltons were observed with both antisera. The strongly immunoreactive 37 kilodalton polypeptide due to the periplasmic carbonic anhydrase was also observed in lysed cells, but neither the 37 kilodalton nor the 110 kilodalton polypeptides were present in the chloroplast stromal fraction. These studies have identified intracellular carbonic anhydrase activity, and putative intracellular carbonic anhydrase polypeptides in Chlamydomonas reinhardtii represented by a 45 kilodalton polypeptide in the chloroplast and a 110 kilodalton form probably in the cytoplasm, which may be associated with an intracellular inorganic carbon concentrating
منابع مشابه
Identification of Intracellular Carbonic Anhydrase in Chlamydomonas reinhardtii which Is Distinct from the Periplasmic Form of the Enzyme.
A physiologically significant level of intracellular carbonic anhydrase has been identified in Chlamydomonas reinhardtii after lysis of the cell wall-less mutant, cw15, and two intracellular polypeptides have been identified which bind to anti-carbonic anhydrase antisera. The susceptibility of the intracellular activity to sulfonamide carbonic anhydrase inhibitors is more than three orders-of-m...
متن کاملIdentification of Extracellular Carbonic Anhydrase of Chlamydomonas reinhardtii.
We have examined the induction of carbonic anhydrase activity in Chlamydomonas reinhardtii and have identified the polypeptide responsible for this activity. This polypeptide was not synthesized when the alga was grown photoautotrophically on 5% CO(2), but its synthesis was induced under low concentrations of CO(2) (air levels of CO(2)). In CW-15, a mutant of C. reinhardtii which lacks a cell w...
متن کاملIsolation and Characterization of a Mutant of Chiamydomonas reinhardtii Deficient in the CO2 Concentrating Mechanism1
A Chiamydomonas reinhardtii mutant has been isolated that cannot grow photoautotrophically on low CO2 concentrations but can grow on elevated CO2. In a test cross, the high C02-requirement for growth showed a 2:2 segregation. This mutant, designated CIA-5, had a phenotype similar to previously identified mutants that were defective in some aspect of CO2 accumulation. Unlike previously isolated ...
متن کاملPartial characterization of a new isoenzyme of carbonic anhydrase isolated from Chlamydomonas reinhardtii.
A new isoenzyme of carbonic anhydrase has been isolated and purified from Chlamydomonas reinhardtii. This carbonic anhydrase is composed of two nonidentical subunits with apparent molecular masses of 39 and 4.5 kDa and is located in the periplasmic space. This is the second periplasmic carbonic anhydrase found in C. reinhardtii. Two genes, CAH1 and CAH2, which code for carbonic anhydrase, have ...
متن کاملStudy of Glycation Process of Human Carbonic Anhydrase II and Investigation of Effect of Fasting On Enzyme Activity by Using Spectroscopic Methods
Background: Glycation is the non-enzymatic reaction between the carbonyl groups in sugar and free amino groups in proteins. this reaction leads to changes in structure and functions of proteins. Advanced glycation end products (AGEs) is the final stage in this process, which is highly oxidizing and destructive nature, causing many diabetic complications. Methods: In the present investigation, ...
متن کامل